
Developer Guide
Ways of working

Kamran Zafar



Agenda

• Development environment


• Developing, building and testing code


• Branching model


• Promotion and release


• Definition of Done



Development Environment
• Core tools 


• IDE (IntelliJ, Eclipse, Netbeans etc.)


• Java (JDK 1.8)


• Build tools (Maven, Gradle etc.)


• Version control software (Git)


• Project specific tools (and for local integration testing)


• Docker (for containerised microservices)


• IBM Websphere (Legacy applications)


• AWS CLI (For cloud based services)


• Postgres, Oracle etc. etc.



Development Environment 
Setup 1

Install and setup both core and project specific 
tools on host machine. 

Advantages 

• Easy setup


Disadvantages 

• Environment Clutter


• Configuration management overhead


• Configuration conflicts


• Tooling incompatibility 


• Unnecessary resource utilisation


• Not so easy to test




Development Environment 
Setup 2

Install only core tools on host machine and 
virtualise the rest. 

Advantages 

• Clean host development environment


• Isolated project test pods


• Spin up environment and tooling when needed


• Optimum resource utilisation


• No configuration/tooling conflicts and 
incompatibilities


Disadvantages 

• Learning curve


• Initial setup using virtualisation tools like 
Vagrant



Develop, build and test 
code locally

• Code must build locally and all checks (static code 
analysis, unit tests etc.) should pass


• Integration and deployment testing should be done locally 
using relevant services and containers (databases, app 
server, docker etc.)


• Unit test cases must be written for each newly created 
code-unit (class, method etc.)


• Existing unit test cases must be kept up-to-date in case 
of changes to existing code



Branching Model
• Two primary branches


1. Master


• In-Sync with 
Production


• Stable releases


2. Development


• Working branch


• Snapshot releases



Branching Model
• Multiple Feature branches


• Branched off development


• Merged to development 
once feature is ready to be 
functionally tested


• The merge to development 
builds and deploys snapshot


• The merge-commit is tagged 
as “Release candidate”

http://nvie.com/posts/a-successful-git-branching-model/


Branching Model
• Hotfix branch


• Branched off master


• Deploys to test 
environment once fixed


• Merges to master after 
promotion to 
production


• Merges to development

http://nvie.com/posts/a-successful-git-branching-model/


Branching Model
• Release branch


• Branched off development when 
features need to be released


• Release build promoted and 
tested on SIT and PPTE


• Released to production


• Merged to master


• Merged to development


• Commit to master is tagged as 
“Release” with version

http://nvie.com/posts/a-successful-git-branching-model/


Promotion and Release

• All snapshot artefacts are published to “build” repository 
and are not promoted beyond the test environment.


• All release artefacts can be promoted to “verify” 
repository for SIT/PPTE deployment and testing.


• Once a release artefact is stable, it can then be promoted 
to “release” repository for deployment to production.



Definition of Done
1. Story kickoff 

• Requirements
• Acceptance criteria

2. Development completed
3. Code unit tested
4. CI updates (Jenkins pipelines)
5. Sonar passed (Owasp, Claire scan, findbug, checkstyle, code 

coverage)
6. Code walkthrough and peer-review
7. Functional tests passed (acceptance criteria met)
8. Regression tests pass
9. NFRs met

• Performance SLAs
• Security compliance (CSAM requirements)

10. Documentation


