Developer Guide

Ways of working

Agenda

Development environment
Developing, building and testing code
Branching model

Promotion and release

Definition of Done

Development Environment

e Core tools

IDE (Intellid, Eclipse, Netbeans etc.)

Java (JDK 1.8)

Build tools (Maven, Gradle etc.)
* \ersion control software (Git)

* Project specific tools (and for local integration testing)

Docker (for containerised microservices)

IBM Websphere (Legacy applications)

AWS CLI (For cloud based services)

Postgres, Oracle etc. etc.

Development Environment
Setup 1

Install and setup both core and project specific
tools on host machine.

Advantages

Easy setup

Disadvantages

Environment Clutter

Configuration management overhead
Configuration conflicts

Tooling incompatibility

Unnecessary resource utilisation

Not so easy to test

Development Environment
Setup 2

Install only core tools on host machine and
virtualise the rest.

Advantages

e Clean host development environment

|solated project test pods

Spin up environment and tooling when needed

Optimum resource utilisation

No configuration/tooling conflicts and
incompatibilities

Disadvantages
e Learning curve

* |nitial setup using virtualisation tools like
Vagrant

Develop, build and test
code locally

Code must build locally and all checks (static code
analysis, unit tests etc.) should pass

Integration and deployment testing should be done locally
using relevant services and containers (databases, app
server, docker etc.)

Unit test cases must be written for each newly created
code-unit (class, method etc.)

Existing unit test cases must be kept up-to-date in case
of changes to existing code

Branching Model

develop master

e Two primary branches é

1. Master

* In-Sync with
Production

e Stable releases

2. Development

* Working branch

progress on
e Snapshot releases L

Branching Model

feature
develop
branches

* Multiple Feature branches
 Branched off development
* Merged to development _,
once feature is ready to be
functionally tested

* The merge to development _ \L
builds and deploys snapshot O

* The merge-commit is tagged '
g g9 \\é

as “Release candidate”

http://nvie.com/posts/a-successful-git-branching-model/

Branching Model

develop hotfixes master

o Hotfix branch

e Branched off master / i 1.2 l

e Deploys to test
environment once fixed

e Merges to master after
promotion to
production

O v -
/ — O 1.2

S s o
.OQC
(o]

>0 T w
O A D

(—;
$a
L_.

e Merges to development

O 0«0« 00«0

http://nvie.com/posts/a-successful-git-branching-model/

Branching Model

e Release branch

e Branched off development when
features need to be released

e Release build promoted and
tested on SIT and PPTE

 Released to production
* Merged to master

* Merged to development

e Commit to master is tagged as
“Release” with version

http://nvie.com/posts/a-successful-git-branching-model/

Promotion and Release

e All snapshot artefacts are published to “build” repository
and are not promoted beyond the test environment.

e All release artefacts can be promoted to “verify”
repository for SIT/PPTE deployment and testing.

e Once a release artefact is stable, it can then be promoted
to “release” repository for deployment to production.

Definition of Done

1. Story kickoff

e Requirements

e Acceptance criteria

Development completed

Code unit tested

Cl updates (Jenkins pipelines)

Sonar passed (Owasp, Claire scan, findbug, checkstyle, code
coverage)

Code walkthrough and peer-review

Functional tests passed (acceptance criteria met)
Regression tests pass

NFRs met

e Performance SLAs

e Security compliance (CSAM requirements)

10. Documentation

ok

© 00N

